The inter-epidemic period is calculated from the largest imaginary part of eigenvalues of the Jacobian matrix evaluated at the endemic equilibrium.
Jacobian matrix $$ \mathbf{J} = \left[ {\begin{array}{ccccccccccccc} \frac{\partial\dot{S}}{\partial S} & \frac{\partial\dot{S}}{\partial E} & \frac{\partial\dot{S}}{\partial I} & \frac{\partial\dot{S}}{\partial R} \\ \frac{\partial\dot{E}}{\partial S} & \frac{\partial\dot{E}}{\partial E} & \frac{\partial\dot{E}}{\partial I} & \frac{\partial\dot{E}}{\partial R} \\ \frac{\partial\dot{I}}{\partial S} & \frac{\partial\dot{I}}{\partial E} & \frac{\partial\dot{I}}{\partial I} & \frac{\partial\dot{I}}{\partial R} \\ \frac{\partial\dot{R}}{\partial S} & \frac{\partial\dot{R}}{\partial E} & \frac{\partial\dot{R}}{\partial I} & \frac{\partial\dot{R}}{\partial R} \end{array}} \right] = \left[ {\begin{array}{ccccccccccccc} -(\beta I + \mu) & 0 & -\beta S & \omega \\ \beta I & -(\sigma + \mu) & \beta S & 0 \\ 0 & \sigma & -(\gamma + \mu + \alpha) & 0 \\ 0 & 0 & \gamma & -(\omega + \mu) \end{array}} \right] $$ Eigenvalue equation and inter-epidemic period $$ \begin{array}{cccc} |\mathbf{J}_{t = \infty} - \lambda \mathbf{I}| = 0 && T_{\mathrm{E}} = \dfrac{2 \pi}{\mathrm{Im} (\mathrm{max}_\textrm{Im} \lambda) } \end{array} $$ Approximation of inter-epidemic period $$ T_{\mathrm{E}} \approx 4 \pi \sqrt{4 \omega (R_0 - 1)(\gamma + \mu + \alpha)- \left(\omega-\frac{1}{A}\right)^2} $$Infection trajectories show a numerical solution to the SEIRS equations with 1,000 time steps and initial parameters
$$S(0) = 0.999 - p$$ $$E(0) = 0.001$$ $$I(0) = 0$$ $$R(0) = p$$ $$S + E + I + R = N = 1$$where p is the vaccination fraction.
Ottar Bjørnstad1,2, Katriona Shea1, Martin Krzywinski3, Naomi Altman4
1. Department of Biology, The Pennsylvania State University, State College, PA, USA.
2. Department of Entomology, The Pennsylvania State University, State College, PA, USA.
3. Canada’s Michael Smith Genome Sciences Center, Vancouver, British Columbia, Canada.
4. Department of Statistics, The Pennsylvania State University, State College, PA, USA.
https://martinkrz.github.io/posepi2/
Bjørnstad, O., Shea, K., Krzywinski, M. & Altman, N. Points of Significance: The SEIRS model for infectious disease dynamics. (2020) Nature Methods 17:557–558.
23 May 2020 v1.0.0 — initial public release
22 June 2020 v1.0.1 — added links to first column
17 August 2020 v1.0.2 — added links to all columns column
Bjørnstad, O., Shea, K., Krzywinski, M. & Altman, N. Points of Significance: Modelling infectious epidemics. (2020) Nature Methods 17:455–456. (interactive figures, download code)
Shea, K., Bjørnstad, O., Krzywinski, M. & Altman, N. Points of Significance: Uncertainty and the management of epidemics. (2020) Nature Methods 17 (in press). (interactive figures, download code)