Infection trajectories show a numerical solution to the SIR equations with 1,000 time steps and initial parameters
$$S(0) = 0.999 - p$$ $$I(0) = 0.001$$ $$R(0) = p$$ $$S + I + R = N = 1$$where p is the vaccination fraction.
Ottar Bjørnstad1,2, Katriona Shea1, Martin Krzywinski3, Naomi Altman4
1. Department of Biology, The Pennsylvania State University, State College, PA, USA.
2. Department of Entomology, The Pennsylvania State University, State College, PA, USA.
3. Canada’s Michael Smith Genome Sciences Center, Vancouver, British Columbia, Canada.
4. Department of Statistics, The Pennsylvania State University, State College, PA, USA.
https://martinkrz.github.io/posepi1/
Bjørnstad, O., Shea, K., Krzywinski, M. & Altman, N. Points of Significance: Modelling infectious epidemics. (2020) Nature Methods 17:455–456.
Initial public release.
Minor text changes. Fixed typos.
UI tweaks.
Added link to SEIRS column.
Added link to uncertainty and management column.
Fixed bug in figure legend of plot 1 that was showing incorrect value for epidemic peak.
Fixed bug in figure legend of plot 1 that was showing incorrect value for beta.
Bjørnstad, O., Shea, K., Krzywinski, M. & Altman, N. Points of Significance: The SEIRS model for infectious disease dynamics. (2020) Nature Methods 17:557–558. (interactive figures, download code).
Shea, K., Bjørnstad, O., Krzywinski, M. & Altman, N. Points of Significance: Uncertainty and the management of epidemics. (2020) Nature Methods 17 (in press). (interactive figures, download code)